Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you complete this jigsaw of the multiplication square?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outline of Granma T?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What is the greatest number of squares you can make by overlapping three squares?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive activity for one to experiment with a tricky tessellation

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Work out the fractions to match the cards with the same amount of money.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?