Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the chairs?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of the rocket?

An interactive activity for one to experiment with a tricky tessellation

Exchange the positions of the two sets of counters in the least possible number of moves

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Work out the fractions to match the cards with the same amount of money.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outline of this telephone?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you fit the tangram pieces into the outline of Granma T?

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of these people?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Train game for an adult and child. Who will be the first to make the train?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.