A game in which players take it in turns to choose a number. Can you block your opponent?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you fit the tangram pieces into the outline of Little Ming?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

An environment which simulates working with Cuisenaire rods.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Work out the fractions to match the cards with the same amount of money.

If you have only four weights, where could you place them in order to balance this equaliser?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you complete this jigsaw of the multiplication square?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the interactivities to complete these Venn diagrams.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Train game for an adult and child. Who will be the first to make the train?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?