Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Try out the lottery that is played in a far-away land. What is the chance of winning?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you fit the tangram pieces into the outline of Granma T?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Fung at the table?

An interactive activity for one to experiment with a tricky tessellation

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Here is a chance to play a version of the classic Countdown Game.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of these people?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

An environment which simulates working with Cuisenaire rods.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.