An environment which simulates working with Cuisenaire rods.

Can you find all the different ways of lining up these Cuisenaire rods?

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Find out what a "fault-free" rectangle is and try to make some of your own.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Train game for an adult and child. Who will be the first to make the train?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you explain the strategy for winning this game with any target?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Work out the fractions to match the cards with the same amount of money.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

These interactive dominoes can be dragged around the screen.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive activity for one to experiment with a tricky tessellation

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.