Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Mai Ling?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Granma T?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the greatest number of squares you can make by overlapping three squares?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you find all the different ways of lining up these Cuisenaire rods?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Can you fit the tangram pieces into the outline of Little Ming?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive activity for one to experiment with a tricky tessellation

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?