This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you find all the different triangles on these peg boards, and find their angles?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Try out the lottery that is played in a far-away land. What is the chance of winning?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Here is a chance to play a version of the classic Countdown Game.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you explain the strategy for winning this game with any target?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

What is the greatest number of squares you can make by overlapping three squares?

If you have only four weights, where could you place them in order to balance this equaliser?

A game for two people that can be played with pencils and paper. Combine your knowledge of coordinates with some strategic thinking.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Train game for an adult and child. Who will be the first to make the train?