Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for two people that can be played with pencils and paper. Combine your knowledge of coordinates with some strategic thinking.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outline of Granma T?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Mai Ling?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Train game for an adult and child. Who will be the first to make the train?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you use the interactive to complete the tangrams in the shape of butterflies?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

These interactive dominoes can be dragged around the screen.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

What is the greatest number of squares you can make by overlapping three squares?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of this telephone?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Use the interactivity or play this dice game yourself. How could you make it fair?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Work out the fractions to match the cards with the same amount of money.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?