Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outline of the child walking home from school?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the chairs?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of these clocks?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of Little Fung at the table?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .