Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

What is the greatest number of squares you can make by overlapping three squares?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

An environment which simulates working with Cuisenaire rods.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Match pairs of cards so that they have equivalent ratios.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

A game for two people that can be played with pencils and paper. Combine your knowledge of coordinates with some strategic thinking.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Can you logically construct these silhouettes using the tangram pieces?