Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

What is the greatest number of squares you can make by overlapping three squares?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the rocket?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this sports car?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Granma T?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Exchange the positions of the two sets of counters in the least possible number of moves

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Use the interactivity or play this dice game yourself. How could you make it fair?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

An interactive activity for one to experiment with a tricky tessellation

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?