Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

An interactive activity for one to experiment with a tricky tessellation

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you find all the different ways of lining up these Cuisenaire rods?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Train game for an adult and child. Who will be the first to make the train?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Work out the fractions to match the cards with the same amount of money.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fit the tangram pieces into the outline of this junk?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

What is the greatest number of squares you can make by overlapping three squares?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How many different triangles can you make on a circular pegboard that has nine pegs?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the interactivity or play this dice game yourself. How could you make it fair?

Exchange the positions of the two sets of counters in the least possible number of moves