Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you find all the different ways of lining up these Cuisenaire rods?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different triangles can you make on a circular pegboard that has nine pegs?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Here is a chance to play a version of the classic Countdown Game.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

An environment which simulates working with Cuisenaire rods.

Work out the fractions to match the cards with the same amount of money.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you find all the different triangles on these peg boards, and find their angles?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out what a "fault-free" rectangle is and try to make some of your own.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you explain the strategy for winning this game with any target?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you use the interactive to complete the tangrams in the shape of butterflies?