Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you beat the computer in the challenging strategy game?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Use Excel to explore multiplication of fractions.

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

These interactive dominoes can be dragged around the screen.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Match pairs of cards so that they have equivalent ratios.

Match the cards of the same value.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Use an Excel spreadsheet to explore long multiplication.

Can you fit the tangram pieces into the outline of Little Ming?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?