An interactive activity for one to experiment with a tricky tessellation

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What is the greatest number of squares you can make by overlapping three squares?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Work out the fractions to match the cards with the same amount of money.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you fit the tangram pieces into the outline of Granma T?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?