Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you explain the strategy for winning this game with any target?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Here is a chance to play a version of the classic Countdown Game.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

Find out what a "fault-free" rectangle is and try to make some of your own.

If you have only four weights, where could you place them in order to balance this equaliser?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?