Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you explain the strategy for winning this game with any target?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Here is a chance to play a version of the classic Countdown Game.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

An environment which simulates working with Cuisenaire rods.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you complete this jigsaw of the multiplication square?

Work out how to light up the single light. What's the rule?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A collection of resources to support work on Factors and Multiples at Secondary level.

Try out the lottery that is played in a far-away land. What is the chance of winning?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

An interactive activity for one to experiment with a tricky tessellation

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.