Can you explain the strategy for winning this game with any target?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Here is a chance to play a version of the classic Countdown Game.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

If you have only four weights, where could you place them in order to balance this equaliser?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Train game for an adult and child. Who will be the first to make the train?

Find out what a "fault-free" rectangle is and try to make some of your own.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?