Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

How many different triangles can you make on a circular pegboard that has nine pegs?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you find all the different triangles on these peg boards, and find their angles?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you find all the different ways of lining up these Cuisenaire rods?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?