How many different triangles can you make on a circular pegboard that has nine pegs?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

What happens when you try and fit the triomino pieces into these two grids?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Can you fit the tangram pieces into the outline of Granma T?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the chairs?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many different rhythms can you make by putting two drums on the wheel?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Sort the houses in my street into different groups. Can you do it in any other ways?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?