How many different rhythms can you make by putting two drums on the wheel?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What happens when you try and fit the triomino pieces into these two grids?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of the child walking home from school?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you find all the different triangles on these peg boards, and find their angles?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Find out what a "fault-free" rectangle is and try to make some of your own.

Train game for an adult and child. Who will be the first to make the train?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

If you have only four weights, where could you place them in order to balance this equaliser?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?