An environment which simulates working with Cuisenaire rods.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you find all the different ways of lining up these Cuisenaire rods?

Work out the fractions to match the cards with the same amount of money.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

Train game for an adult and child. Who will be the first to make the train?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

How many different rhythms can you make by putting two drums on the wheel?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Incey Wincey Spider game for an adult and child. Will Incey get to the top of the drainpipe?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Move just three of the circles so that the triangle faces in the opposite direction.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Complete the squares - but be warned some are trickier than they look!

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.