If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of the rocket?

Move just three of the circles so that the triangle faces in the opposite direction.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Little Ming?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Granma T?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this telephone?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the workmen?

Twenty four games for the run-up to Christmas.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the chairs?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?