Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

If you have only four weights, where could you place them in order to balance this equaliser?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you hang weights in the right place to make the equaliser balance?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the number weights to find different ways of balancing the equaliser.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you complete this jigsaw of the multiplication square?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

What happens when you try and fit the triomino pieces into these two grids?

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

How many different rhythms can you make by putting two drums on the wheel?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Move just three of the circles so that the triangle faces in the opposite direction.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Exchange the positions of the two sets of counters in the least possible number of moves