Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Here is a chance to play a version of the classic Countdown Game.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

If you have only four weights, where could you place them in order to balance this equaliser?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Find out what a "fault-free" rectangle is and try to make some of your own.

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What happens when you try and fit the triomino pieces into these two grids?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you sort these triangles into three different families and explain how you did it?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Use the interactivity or play this dice game yourself. How could you make it fair?