Imagine a machine with four coloured lights which respond to different rules. Can you find the smallest possible number which will make all four colours light up?
Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .
In how many ways can a pound (value 100 pence) be changed into some combination of 1, 2, 5, 10, 20 and 50 pence coins?
Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?
Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.
Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.
A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .
Are these statements always true, sometimes true or never true?
Can you find any perfect numbers? Read this article to find out more...
A case is found with a combination lock. There is one clue about the number needed to open the case. Can you find the number and open the case?
The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.
The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?
How many six digit numbers are there which DO NOT contain a 5?
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
Find the number which has 8 divisors, such that the product of the divisors is 331776.
Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?
Can you make a hypothesis to explain these ancient numbers?
How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?
Can you find ways of joining cubes together so that 28 faces are visible?
I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?
There are some water lilies in a lake. The area that they cover doubles in size every day. After 17 days the whole lake is covered. How long did it take them to cover half the lake?
The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?
Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?
This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.
Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?
Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .
How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?
This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.
Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .
This investigation is about happy numbers in the World of the Octopus where all numbers are written in base 8 ... Find all the fixed points and cycles for the happy number sequences in base 8.
Can you find any two-digit numbers that satisfy all of these statements?
A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?
Is there an efficient way to work out how many factors a large number has?
Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?
Can you work out how many of each kind of pencil this student bought?
Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.
Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.
Suppose you had to begin the never ending task of writing out the natural numbers: 1, 2, 3, 4, 5.... and so on. What would be the 1000th digit you would write down.
Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.
I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?
This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.
My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?
This article explains how credit card numbers are defined and the check digit serves to verify their accuracy.
Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?
When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .
This task depends on learners sharing reasoning, listening to opinions, reflecting and pulling ideas together.
This is a game in which your counters move in a spiral round the snail's shell. It is about understanding tens and units.