Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Let S1 = 1 , S2 = 2 + 3, S3 = 4 + 5 + 6 ,........ Calculate S17.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Prove that 3 times the sum of 3 squares is the sum of 4 squares. Rather easier, can you prove that twice the sum of two squares always gives the sum of two squares?

Prove that the product of the sum of n positive numbers with the sum of their reciprocals is not less than n^2.

An algebra task which depends on members of the group noticing the needs of others and responding.

Five equations... five unknowns... can you solve the system?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find all the triples of numbers a, b, c such that each one of them plus the product of the other two is always 2.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

To break down an algebraic fraction into partial fractions in which all the denominators are linear and all the numerators are constants you sometimes need complex numbers.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

A task which depends on members of the group noticing the needs of others and responding.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Robert noticed some interesting patterns when he highlighted square numbers in a spreadsheet. Can you prove that the patterns will continue?

The heptathlon is an athletics competition consisting of 7 events. Can you make sense of the scoring system in order to advise a heptathlete on the best way to reach her target?

A sequence of polynomials starts 0, 1 and each poly is given by combining the two polys in the sequence just before it. Investigate and prove results about the roots of the polys.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Account of an investigation which starts from the area of an annulus and leads to the formula for the difference of two squares.

If a sum invested gains 10% each year how long before it has doubled its value?

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you make sense of these three proofs of Pythagoras' Theorem?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

This pattern of six circles contains three unit circles. Work out the radii of the other three circles and the relationship between them.