However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Find the five distinct digits N, R, I, C and H in the following nomogram

The heptathlon is an athletics competition consisting of 7 events. Can you make sense of the scoring system in order to advise a heptathlete on the best way to reach her target?

If a sum invested gains 10% each year how long before it has doubled its value?

Find all the triples of numbers a, b, c such that each one of them plus the product of the other two is always 2.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

How good are you at finding the formula for a number pattern ?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

My train left London between 6 a.m. and 7 a.m. and arrived in Paris between 9 a.m. and 10 a.m. At the start and end of the journey the hands on my watch were in exactly the same positions but the. . . .

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Can you find a rule which connects consecutive triangular numbers?

Show that all pentagonal numbers are one third of a triangular number.

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

A task which depends on members of the group noticing the needs of others and responding.

An algebra task which depends on members of the group noticing the needs of others and responding.

Robert noticed some interesting patterns when he highlighted square numbers in a spreadsheet. Can you prove that the patterns will continue?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Account of an investigation which starts from the area of an annulus and leads to the formula for the difference of two squares.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

What is the total number of squares that can be made on a 5 by 5 geoboard?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Let S1 = 1 , S2 = 2 + 3, S3 = 4 + 5 + 6 ,........ Calculate S17.

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

Can you make sense of these three proofs of Pythagoras' Theorem?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

In a snooker game the brown ball was on the lip of the pocket but it could not be hit directly as the black ball was in the way. How could it be potted by playing the white ball off a cushion?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?