Can you find the lap times of the two cyclists travelling at constant speeds?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

My train left London between 6 a.m. and 7 a.m. and arrived in Paris between 9 a.m. and 10 a.m. At the start and end of the journey the hands on my watch were in exactly the same positions but the. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Make some loops out of regular hexagons. What rules can you discover?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

Think of a number and follow the machine's instructions... I know what your number is! Can you explain how I know?

Can you find a rule which connects consecutive triangular numbers?

Can you find a rule which relates triangular numbers to square numbers?

Show that all pentagonal numbers are one third of a triangular number.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Create some shapes by combining two or more rectangles. What can you say about the areas and perimeters of the shapes you can make?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

If a sum invested gains 10% each year how long before it has doubled its value?

Choose any four consecutive even numbers. Multiply the two middle numbers together. Multiply the first and last numbers. Now subtract your second answer from the first. Try it with your own. . . .

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

The Number Jumbler can always work out your chosen symbol. Can you work out how?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The well known Fibonacci sequence is 1 ,1, 2, 3, 5, 8, 13, 21.... How many Fibonacci sequences can you find containing the number 196 as one of the terms?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

What are the possible dimensions of a rectangular hallway if the number of tiles around the perimeter is exactly half the total number of tiles?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?