Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article for teachers suggests ideas for activities built around 10 and 2010.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Here is a chance to play a version of the classic Countdown Game.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Given the products of adjacent cells, can you complete this Sudoku?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Number problems at primary level that require careful consideration.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?