The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Can you find what the last two digits of the number $4^{1999}$ are?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the highest power of 11 that will divide into 1000! exactly.

56 406 is the product of two consecutive numbers. What are these two numbers?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

This task offers an opportunity to explore all sorts of number relationships, but particularly multiplication.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This task combines spatial awareness with addition and multiplication.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Number problems at primary level that may require resilience.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Can you find different ways of creating paths using these paving slabs?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Given the products of adjacent cells, can you complete this Sudoku?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

What is the remainder when 2^{164}is divided by 7?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

What is the least square number which commences with six two's?

This challenge combines addition, multiplication, perseverance and even proof.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Resources to support understanding of multiplication and division through playing with number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?