Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you replace the letters with numbers? Is there only one solution in each case?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level that require careful consideration.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

This number has 903 digits. What is the sum of all 903 digits?

Use the information to work out how many gifts there are in each pile.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?