Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

This problem is designed to help children to learn, and to use, the two and three times tables.

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!