56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Use the information to work out how many gifts there are in each pile.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This task combines spatial awareness with addition and multiplication.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This number has 903 digits. What is the sum of all 903 digits?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Number problems at primary level that may require resilience.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

How would you count the number of fingers in these pictures?