Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you complete this jigsaw of the multiplication square?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Here is a chance to play a version of the classic Countdown Game.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Given the products of adjacent cells, can you complete this Sudoku?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level that require careful consideration.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Resources to support understanding of multiplication and division through playing with number.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.