The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find the highest power of 11 that will divide into 1000! exactly.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Can you find what the last two digits of the number $4^{1999}$ are?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

This task combines spatial awareness with addition and multiplication.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

Number problems at primary level that may require resilience.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

56 406 is the product of two consecutive numbers. What are these two numbers?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

Given the products of adjacent cells, can you complete this Sudoku?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Imagine you were given the chance to win some money... and imagine you had nothing to lose...

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use the information to work out how many gifts there are in each pile.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This challenge combines addition, multiplication, perseverance and even proof.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?