This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

A game that tests your understanding of remainders.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

56 406 is the product of two consecutive numbers. What are these two numbers?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Given the products of adjacent cells, can you complete this Sudoku?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Here is a chance to play a version of the classic Countdown Game.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This challenge combines addition, multiplication, perseverance and even proof.

This task combines spatial awareness with addition and multiplication.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Number problems at primary level that may require resilience.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This number has 903 digits. What is the sum of all 903 digits?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?