Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Given the products of adjacent cells, can you complete this Sudoku?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

This problem is designed to help children to learn, and to use, the two and three times tables.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Number problems at primary level that may require determination.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

56 406 is the product of two consecutive numbers. What are these two numbers?

A game that tests your understanding of remainders.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Find the highest power of 11 that will divide into 1000! exactly.

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?