Can you find what the last two digits of the number $4^{1999}$ are?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Find the highest power of 11 that will divide into 1000! exactly.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Can you find different ways of creating paths using these paving slabs?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

Find the next number in this pattern: 3, 7, 19, 55 ...

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Number problems at primary level that may require resilience.

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

56 406 is the product of two consecutive numbers. What are these two numbers?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

What is the least square number which commences with six two's?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

What is the remainder when 2^{164}is divided by 7?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

This task combines spatial awareness with addition and multiplication.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Given the products of adjacent cells, can you complete this Sudoku?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?