Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you complete this jigsaw of the multiplication square?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Here is a chance to play a version of the classic Countdown Game.

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task combines spatial awareness with addition and multiplication.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.