Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level that may require resilience.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

This task combines spatial awareness with addition and multiplication.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use the information to work out how many gifts there are in each pile.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you find different ways of creating paths using these paving slabs?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

What is the least square number which commences with six two's?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Resources to support understanding of multiplication and division through playing with number.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?