Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Here is a chance to play a version of the classic Countdown Game.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Number problems at primary level that require careful consideration.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

56 406 is the product of two consecutive numbers. What are these two numbers?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Resources to support understanding of multiplication and division through playing with number.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Given the products of adjacent cells, can you complete this Sudoku?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This number has 903 digits. What is the sum of all 903 digits?

How would you count the number of fingers in these pictures?