This task combines spatial awareness with addition and multiplication.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This challenge combines addition, multiplication, perseverance and even proof.

56 406 is the product of two consecutive numbers. What are these two numbers?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Given the products of adjacent cells, can you complete this Sudoku?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Number problems at primary level that may require resilience.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?