On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Can you replace the letters with numbers? Is there only one solution in each case?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Number problems at primary level that require careful consideration.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?