Number problems at primary level that may require resilience.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

56 406 is the product of two consecutive numbers. What are these two numbers?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

This number has 903 digits. What is the sum of all 903 digits?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use the information to work out how many gifts there are in each pile.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?