This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were 22 legs creeping across the web. How many flies? How many spiders?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you find different ways of creating paths using these paving slabs?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Number problems at primary level that require careful consideration.

This number has 903 digits. What is the sum of all 903 digits?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Find the next number in this pattern: 3, 7, 19, 55 ...

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Number problems at primary level that may require resilience.

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

How would you count the number of fingers in these pictures?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?