The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

There were 22 legs creeping across the web. How many flies? How many spiders?

Claire thinks she has the most sports cards in her album. "I have 12 pages with 2 cards on each page", says Claire. Ross counts his cards. "No! I have 3 cards on each of my pages and there are. . . .

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Use the information to work out how many gifts there are in each pile.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This number has 903 digits. What is the sum of all 903 digits?

Number problems at primary level that may require resilience.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

56 406 is the product of two consecutive numbers. What are these two numbers?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?