This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Delight your friends with this cunning trick! Can you explain how it works?

Find a great variety of ways of asking questions which make 8.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

How can we help students make sense of addition and subtraction of negative numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Here is a chance to play a version of the classic Countdown Game.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

An account of some magic squares and their properties and and how to construct them for yourself.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Find out about Magic Squares in this article written for students. Why are they magic?!

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

What is the sum of all the digits in all the integers from one to one million?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

There are nasty versions of this dice game but we'll start with the nice ones...

Use these four dominoes to make a square that has the same number of dots on each side.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This challenge extends the Plants investigation so now four or more children are involved.