You have 5 darts and your target score is 44. How many different ways could you score 44?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.