Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Here is a chance to play a version of the classic Countdown Game.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Using the statements, can you work out how many of each type of rabbit there are in these pens?