Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Got It game for an adult and child. How can you play so that you know you will always win?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Can you substitute numbers for the letters in these sums?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A game for 2 players. Practises subtraction or other maths operations knowledge.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ben has five coins in his pocket. How much money might he have?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?