This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This challenge extends the Plants investigation so now four or more children are involved.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

A game for 2 players. Practises subtraction or other maths operations knowledge.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This dice train has been made using specific rules. How many different trains can you make?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!